Деление многозначных чисел столбиком на двузначное, трехзначное число в 3,4 классе: как объяснить ребенку + топ-10 примеров

Как делить столбиком

Допустим, нам нужно разделить  780  на  12,  записываем действие в столбик и приступаем к делению:

Деление столбиком выполняется поэтапно. Первое, что нам требуется сделать, это определить неполное делимое. Смотрим на первую цифру делимого:

это число  7,  так как оно меньше делителя, то мы не можем начать деление с него, значит нужно взять ещё одну цифру из делимого, число  78  больше делителя, поэтому мы начинаем деление с него:

В нашем случае число  78  будет неполным делимым, неполным оно называется потому, что является всего лишь частью делимого.

Определив неполное делимое, мы можем узнать сколько цифр будет в частном, для этого нам нужно посчитать, сколько цифр осталось в делимом после неполного делимого, в нашем случае всего одна цифра —  0,  это значит, что частное будет состоять из  2  цифр.

Узнав количество цифр, которое должно получиться в частном, на его месте можно поставить точки. Если при завершении деления количество цифр получилось больше или меньше, чем указано точек, значит где-то была допущена ошибка:

Приступаем к делению. Нам нужно определить сколько раз  12  содержится в числе  78.  Для этого мы последовательно умножаем делитель на натуральные числа  1, 2, 3, …,  пока не получится число максимально близкое к неполному делимому или равное ему, но не превышающее его. Таким образом мы получаем число  6,  записываем его под делитель, а из  78  (по правилам вычитания столбиком) вычитаем  72  (12 · 6 = 72).  После того, как мы вычли  72  из  78,  получился остаток  6:

Обратите внимание, что остаток от деления показывает нам, правильно ли мы подобрали число. Если остаток равен делителю или больше него, то мы не правильно подобрали число и нам нужно взять число побольше

К получившемуся остатку —  6,  сносим следующую цифру делимого —  0.  В результате, получилось неполное делимое —  60.  Определяем, сколько раз  12  содержится в числе  60.  Получаем число  5,  записываем его в частное после цифры  6,  а из  60  вычитаем  60  (12 · 5 = 60).  В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит  780  разделилось на  12  нацело. В результате выполнения деления столбиком мы нашли частное — оно записано под делителем:

780 : 12 = 65.

Рассмотрим пример, когда в частном получаются нули. Допустим нам нужно разделить  9027  на  9.

Определяем неполное делимое — это число  9.  Записываем в частное  1  и из  9  вычитаем  9.  В остатке получился нуль. Обычно, если в промежуточных вычислениях в остатке получается нуль, его не записывают:

Сносим следующую цифру делимого —  0.  Вспоминаем, что при делении нуля на любое число будет нуль. Записываем в частное нуль  (0 : 9 = 0)  и в промежуточных вычислениях из  0  вычитаем  0.  Обычно, чтобы не нагромождать промежуточные вычисления, вычисление с нулём не записывают:

Сносим следующую цифру делимого —  2.  В промежуточных вычислениях вышло так, что неполное делимое  (2)  меньше, чем делитель  (9).  В этом случае в частное записывают нуль и сносят следующую цифру делимого:

Определяем, сколько раз  9  содержится в числе  27.  Получаем число  3,  записываем его в частное, а из  27  вычитаем  27.  В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит число  9027  разделилось на  9  нацело:

9027 : 9 = 1003.

Рассмотрим пример, когда делимое оканчивается нулями. Пусть нам требуется разделить  3000  на  6.

Определяем неполное делимое — это число  30.  Записываем в частное  5  и из  30  вычитаем  30.  В остатке получился нуль. Как уже было сказано, нуль в остатке в промежуточных вычислениях записывать не обязательно:

Сносим следующую цифру делимого —  0.  Так как при делении нуля на любое число будет нуль, записываем в частное нуль и в промежуточных вычислениях из  0  вычитаем  0:

Сносим следующую цифру делимого —  0.  Записываем в частное ещё один нуль и в промежуточных вычислениях из  0  вычитаем  0.  Так как в промежуточных вычислениях, вычисление с нулём обычно не записывают, то запись можно сократить, оставив только остаток —  0.  Нуль в остатке в самом конце вычислений обычно записывают для того, чтобы показать, что деление выполнено нацело:

Так как в делимом больше не осталось цифр, значит  3000  разделилось на  6  нацело:

3000 : 6 = 500.

Общие сведения

Любую математическую операцию можно осуществить в столбик. Деление не является исключением. Следует отметить, что оно бывает без остатка и с ним. Если выполняется операция первого типа, то необходимо знать признаки деления. Последними называются правила, по которым можно определить — делится ли число на другое без остатка. Однако во втором случае в конце вычислений получается определенное значение. Его математики называют остатком.

Деление такого типа широко применяет в языках программирования для создания различных условий. Если необходимо произвести деление в столбик на однозначное число без остатка, то нужно знать признаки делимости. Последние не нужны в том случае, когда следует осуществить деление с остатком трехзначного числа на однозначное. Следует отметить, что нужно различать терминологию. Не все люди знают основное различие между цифрами и числами. Первые применяются для образования вторых, то есть первые — набор знаков.

Основным требованием, необходимым для осуществления этой операции, является доскональное знание таблицы умножения. Без последней не обходится ни один урок, письменное отчетное задание или сдача экзамена. Операция деления применяется реже сложения, вычитания или умножения. Однако ее следует знать досконально и уметь производить вычисления не только при помощи калькулятора или компьютера, но и в ручном режиме.

Иногда ученики сталкиваются с непониманием материала, который не может объяснить доходчиво учитель для каждого индивидуально. Если у ребенка проблемы в какой-либо учебной четверти, то не стоит затягивать с решением проблемы. Родителям нужно разработать собственную систему обучения или воспользоваться уже готовой. Однако некоторые из них начинают кричать на ребенка, травмируя психику. Следует помнить, что он часто копирует поведение родителей. Когда они его приучают к эмоциональному решению проблем, тогда и вырастают неуверенные в себе молодые люди.

Следует помнить, что для изучения любой точной науки необходимо терпение. Сразу ничего не получалось даже у знаменитых математиков. Необходимо дома создать уютный уголок с тренажерами для тренировок по решению математических задач. Пусть это будет своеобразный офис для малыша. Ему необходимо помочь его оборудовать: распечатать необходимый математический материал и сделать хорошее освещение.

Разложение на слагаемые

Интересным вариантом алгоритма является метод разложения числа на слагаемые. Его суть очень проста: представление делимого в виде суммы нескольких слагаемых, при условии деления каждого из них на выбранное число. Инструкция является очень простой. Она может стать дополнительным математическим тренажером для ребенка, поскольку развивает мышление и улучшает память. Для деления любого числа на другое нужно строго выполнить следующие шаги:

  1. Методом подбора разложить число на слагаемые, каждое из которых должно делиться на делитель.
  2. Разделить значения в первом пункте на заданный делитель.
  3. Сложить результаты для получения итоговой суммы.

На первом шаге специалисты рекомендуют слагаемые отделить от делителя круглыми скобками. Записывать нужно в одну строчку для наглядности. Далее следует выполнить деление или сократить слагаемые на множитель. Полученную сумму сложить и записать ответ. Например, следует вычислить 156/4.

Выполняется эта процедура таким образом:

  1. Разложение: 156 = (140 + 16) = (160 — 4).
  2. Деление: (140 + 16) / 4.
  3. Результат: 35 + 4 = 39.

Специалисты рекомендуют представлять число в удобной форме, а не только в виде суммы. Доказывать, что это значение является простым не нужно, поскольку не стоит такая задача. Этот алгоритм необходимо записать на картонную карточку. Чтобы научиться по нему решать, можно также написать текст или инструкцию. Одним словом, следует руководствоваться удобством для ребенка.

Методика обучения делению в столбик

Чтобы приступить к этому арифметическому действию, нужно познакомить ребенка с названием элементов при делении.

Делимое – число, что подвергается делению, делится на делитель, в результате получается частное.

Объясняют ему саму суть операции деления столбиком. Это такое действие в математике, которое применяют для разделения чисел за счет дробления самого процесса деления на более простые шаги.

Деление в столбик на конкретном примере

Метод деления, основанный на конкретном примере, очень распространен и используется школьниками в дальнейшей учебе. Ребенку предлагается разделить число 945 на 5 в столбик.

Шаг 1. На этом этапе нужно попросить ребенка показать компоненты деления. Если он правильно усвоил выше изложенный материал, то без особых усилий определит: 945 – это делимое, 5 – делитель, результат деления – частное. Собственно, это то, что и необходимо найти.

Шаг 2. Сначала ребенка просят записать рядом 945 и 5, а потом делят их «уголком».

Шаг 3. Следующий этап, просят ребенка рассмотреть делимое и, продвигаясь вправо, предлагают определить самое меньшее число, что больше делителя. Ученик определяет числа: 9, 94 и 945. Самым меньшим из них является 9. Потом спрашивают, сколько раз 5 помещается в числе 9? Ребенок дает ответ, что один раз. Значит, пишут 1 под чертой – первую цифру искомого частного.

Вот и столбик скоро получится.

Шаг 4. На следующем этапе предлагают ребенку умножить 1 на 5 и получают 5. Просят записать результат, который получили, под первой цифрой делимого, и из 9 вычитают 5. Спрашивают ребенка о результате и получают 4.

Здесь важно объяснить ему, что результат вычитания всегда будет меньше делителя. А когда наоборот, значит, неправильно удалось определить, сколько раз 5 содержится в 9

Так как результат получился меньше делителя, его увеличивают с помощью следующей цифры делимого. Ребенок определяет 4 и пишет к четверке.

Шаг 5. Дальше задают ему знакомый вопрос о том, сколько раз 5 помещается в 44? Ученик отвечает, что восемь раз. Тогда предлагают записать восьмерку к единице под чертой. Объясняют ребенку, что это будет следующая цифра искомого частного. Просят умножить 5 на 8. Получается 40, и записывают эту цифру под 44.

Шаг 6. На следующем этапе вся операция повторяется. Ученик вычитает 40 из 44, и получает 4 (4 меньше 5, значит, ребенок все делает правильно). Теперь предлагают использовать последнюю цифру делимого — 5, просят приписать ее вниз к четверке и получается число 45.

Шаг 7. Просят его записать девятку под чертой. Предлагают умножить 5 на 9. Ребенок говорит, что получает в результате 45 и записывает в столбик под 45. Дальше проводит вычитание 45 из 45, и получает 0. Ему объясняют, что это был пример деления числа без остатка.

Когда ребенок неплохо умеет пользоваться таблицей умножения, деление в столбик для него простой задачей

Очень важно с помощью постоянных примеров и упражнений закрепить полученный навык

Сложение

Сложение – это процесс переноса числа по числовой прямой вправо. Если говорить точнее, то перенос по направлению движения числовой прямой.

Направление движения числовой прямой это направление, в котором происходит увеличение, отмечены на прямой чисел. Теоретически, направление может быть любое, но на практике принято считать, что числа увеличиваются при переносе вправо и уменьшаются при переносе влево.

Складывать можно любые рациональные и комплексные числа. При этом, чтобы складывать иррациональные числа, то есть числа под знаком корня, придется использовать какие-либо хитрости или просто вычислить приближенное значение корня и использовать уже его.

Как научиться делить столбиком трехзначные числа

Когда в делителе стоит трехзначное число, действие лучше всего выполнять в столбик. Алгоритм математического решения аналогичен делению на двузначное число.

Для примера рассмотрим следующие действия: 146676 : 719

146<719, поэтому сразу возьмем четырехзначное число «1466». В данном значении помещается 2 делителя: 719 х 2= 1438. Цифра «2» будет первым значением частного. Ее запишем справа под уголком.

1466 — 1438 = 28. Полученную разность запишем под чертой слева. Снесем к 28 цифру «7». 287<719, поэтому рядом с двойкой запишем «0».

Снесем последнюю цифру делимого «6», в итоге получится число «2876», которое разделим на 719. Возьмем по 3: 719 х 3 = 2157 — мало, можно взять по 4: 719 х 4 = 2876. Цифру «4» запишем рядом с «20», получим в ответе 204. От 2876 отнимем 2876 , получим разность 0.

Деление чисел, оканчивающихся нулями

Решим устно примеры: 240 : 40, 720 : 80.

Заменим делитель произведением двух чисел: 40 = 4 ∙ 10, 80 = 8 ∙10.

240 : 40 = 240 : (4 ∙ 10) = 240 : 10 : 4 = 6

720 : 80 = 720 : (8 ∙10) = 720 : 10 : 8 = 9

Попробуем решить пример более сложный.

1560 : 60

Заменим 60 произведением 6 ∙ 10

1560 : 60 = 1560 : (6 ∙ 10) = 1560 :10 : 6 = 156 : 6

Затруднились?

Действительно, 156 разделить на 6 устно трудно. Значит, этот способ здесь не подходит!

Будем делить столбиком.

Теперь самостоятельно поработайте с  числами, которые оканчиваются  нулями. Устно выполняйте вычисления в первом столбике, письменно – во втором.

640 : 80

210 : 30

720 : 30

1280 : 80

Проверь себя.

640 : 80 = 640 : (8 ∙ 10) = 640 : 10 : 8 = 8

210 : 30 = 210 : (3 ∙ 10) = 210 : 10 : 3 = 7

 

Проверка деления

Так как делимое – это
делитель, умноженный на частное и плюс остаток, что следует из определения
деления, то результат выполнения деления можно проверить умножением.

Например:

После того, как мы умножили частное 241 на делитель 33, а к полученному произведению прибавили остаток 9, мы получили число 7962, что равно делимому. Значит, можно с большой уверенностью сказать, что действие деление выполнено верно.

Если в результате
действия деления не получилось остатка, то деление можно проверить и делением.
Действительно, если делимое – это произведение делителя и частного, то разделив
делимое на частное (один из сомножителей), мы должны получить второй
сомножитель, то есть, делитель.

 Например:

Методика деления в столбик

Существует определенный алгоритм для деления в столбик. Изучается он в начальных классах средних образовательных школ. Методику можно применять не только для положительных, но и отрицательных значений. При этом нужно учитывать знак:

  1. Деление отрицательной величины на отрицательную — положительное значение.
  2. При делении положительного на отрицательное или наоборот — отрицательная величина.

Алгоритм без остатка

Методика применяется в том случае, когда делимое является не простым числом, а содержит множители. Кроме того, при его делении на делитель, не соответствующий одному из признаков деления. Например, 33 делится на 2 с остатком. Однако, когда делитель равен 3, то последнего нет.

Для применения алгоритма нужно наглядно разобрать следующий пример: требуется разделить 78 на 2. Методика выполнения этой операции имеет следующий вид:

  1. Записать делимое с левой стороны, а делитель — справа.
  2. По карточке простых чисел или при помощи ручного метода необходимо определить принадлежность делимого к простым значениям (78 делится на 2, поскольку заканчивается на четную цифру 8).
  3. Разделить две значения вертикальной чертой.
  4. Выделить I неполное делимое: 7.
  5. По таблице умножения подобрать ближайшее целое (3). При произведении его на делитель должно получиться значение, которое меньше первого неполного делимого (3 * 2 = 6 < 7). Если записать 4, то 4 * 2 = 8 > 7 (вариант не подходит).
  6. Записать число, полученное при умножении делителя на подобранное значение, под I неполным делимым. Произвести операцию вычитания (7 — 6 = 1).
  7. Результат вычитания (1), который называется остатком, не делится на 2. Следовательно, нужно дописать II неполное делимое (18). Если по какой-то причине, результат делится на делитель, то подобранное значение является неверным.
  8. Значение 18 делится на 2, т. е. 18/2 = 9.
  9. Результат деления 78 на 2 равен 39.

Операция с остатком

Не во всех случаях результат деления двух чисел является целой величиной. В школьной программе встречается группа примеров, в которых требуется найти остаток, полученный при выполнении операции деления 2 значений (77/3). Алгоритм похож на предыдущий, но имеются некоторые особенности:

  1. Два числа записываются, как и в предыдущем случае.
  2. Принадлежность к множеству простых чисел не проверяется.
  3. Выделить I неполное делимое: 7.
  4. Подобрать ближайшее целое число, записав его в результат: 2.
  5. Выполнить проверку: 3 * 2 = 6 < 7 (значение подходит).
  6. Записать 6 под 7, а затем выполнить операцию вычитания: 7 — 6 = 1. Остаток меньше 3, следовательно, число подобрано правильно.
  7. Выполнить подбор множителя для 17: целочисленного значения нет. Следовательно, нужно подобрать ближайшее целое: 5.
  8. Произвести проверку: 3 * 5 = 15 < 17.
  9. Записать 5 в результат и определить остаток: 17 — 15 = 2.
  10. Результат деления 77 на 3 эквивалентен: 25 с остатком 2.

Таким образом, для выполнения операции деления двузначного числа на однозначное нужно знать признаки делимости величин, а также основные алгоритмы деления с остатком и без него.

Деление в столбик двузначных, трехзначных, многозначных чисел, чисел с нулями

Не нужно пугаться сразу, что процесс деления не простой, поэтому вы не освоите его. Освоите! В математике следует соблюдать четкие правила, тогда у вас все получится. Алгоритм деления лучше учить на конкретных примерах, ниже будет представлено множество примеров.

Пример деления на трехзначный делитель

Все они выполняются по схеме:

  1. Вначале записывается делимое, рядом ставится значок разделить: Ι—, и над чертой пишется делитель (число, на которое делят делимое).
  2. Потом необходимо выделить часть делимого для осуществления деления, если это необходимо в данном случае.
  3. Далее придется выполнять умножение для того, чтобы определить, сколько раз взять делитель, чтобы получилась выделенная часть делимого. Причем число не должно быть больше 9-ти.
  4. Выполняете умножение делителя, записываете результат под делимым, а число ≤ 9-ти записываете под черту знака: Ι– разделить.
  5. Из выбранной части делимого вычитаете результат, записываете его под подчеркиванием, сносите следующую цифру делимого, повторяйте опять процесс умножения, пока не разделите число на число.

Рассмотрим деление в столбик на простом примере:

Если такие двухзначные числа, как 16, 28 можно разделить в уме на 2 или 4 (в первом случае при делении на 2 получится 8 и 14), а во втором (4 и 7), то 51 разделить на 3 без столбика уже сложнее. Как происходит деление в столбик распишем на примере 51 разделить на 3.

Деление в столбик

  • Как записывается делимое, делитель уже было сказано, визуально можно посмотреть выше на изображении. Делимое идет первым, потом ставится значок деления и над чертой пишут делитель.
  • Теперь определяемся, сколько выделить цифр, чтобы начать подбирать множитель, который записывается под чертой в выделенный квадратик на изображении.
  • Выделяем одну цифру 5-ку, она больше 3-ки, на черновике распишите примерно какой подобрать множитель, для того чтобы получить число ≤ 5, наглядно это выглядит так: 5 ≥ 3 · 1, число 1 и есть множитель. Его пишут под чертой делить в квадратике.
  • Далее под пятеркой пишем произведение 3 · 1 = 3.
  • Теперь вычитаем из 5 — 3 = 2. Разница, в нашем случае 2 должна быть < делителя, в нашем случае 3.
  • Итак, остается разделить 21 на 3. Из таблицы умножения вы знаете, что: 21 : 3 = 7.
  • Семерку пишут под чертой значка делить после единицы. Ответ получается 17.

Далее рассмотрим пример деления трехзначных чисел:

Давайте разделим трехзначное число 512 на 16. Деление будет происходить по той же схеме, что и двухзначного числа.

Пример деления трехзначного числа

  • Запишите делимое, делитель, как на фото выше.
  • Далее выделим число 51, и узнайте, сколько раз нужно взять число 16, чтобы получилось произведение меньше или равно 51. Итак, выше представлены расчеты: 16 · 3 = 48 < 51.
  • Значит под чертой напишите 3, а под делимым 48. Теперь из 51 вычтите 48, получится 3, сносим следующую цифру 2.
  • Подберите множитель к 16, чтобы произведение получилось равное или меньше 32. Итого: 16 · 2 = 32.
  • Двойку запишите под черту знака деления, а результат 32 под делимым. Итого 32 — 32 = 0.
  • Результат 32.

Рассмотрим деление многозначного числа:

Давайте найдем частное 998190 на 135, пример представлен на изображении ниже. Чтобы решить его, следует подставить нужные числа в пустых клетках.

Пример деления в столбик

  • Итак, нужно найти первую цифру, на которое нужно умножить число 135, чтобы получить результат ≤ 998. Для этого понадобится знать отлично таблицу умножения и умение складывать цифры. 135 · 7 = 945.
  • Число 945 пишите под делимым, вычтите из 998 — 945 = 53. Это число меньше 135, потому нужно снести еще одну цифру 1, получится 531.
  • Высчитываем, какой множитель подойдет, к 135, чтобы получить число меньше, чем 534. Решение: 135 · 3 = 405.
  • Вторая цифра под чертой знака деления 3, из 531 — 405 = 126.
  • Сносим 9, выходит 1269, подбираем множитель к 135. Результат 135 · 9 = 1215.
  • Третья цифра под чертой 9. Теперь: 1269 — 1215 = 54.
  • Сносим 0, выходит 540, а 540 = 135 · 4, итого последняя цифра результата это 4.
  • Результат 7394.

Деление чисел с нулями:

Простые и составные числа

Числовые значения в математике делятся на простые и составные. Ошибка многих новичков при решении задач состоит в том, что многие из них не знают о наличии специальных таблиц. Для «распознания» простого числа существуют два способа:

  1. Ручной.
  2. Табличный.

Первым методом рекомендуется пользоваться, когда нет возможности определить простое число при помощи таблицы или вычислительной машины (компьютера). Для этих целей существует специальный алгоритм, который состоит из набора шагов на нахождение делителя. Он имеет следующий вид:

  1. Произвести перебор всех множителей.
  2. Записать результат или убедиться, что число является простым.

Он является простым, но для понимания его математического смысла следует разобрать определенный пример для числа 5678913. Решение задания нужно осуществлять по следующей схеме:

  • 1: делится, то есть 5678913 / 1 = 5678913.
  • 2: не является четным. Следовательно, этого делителя не существует.
  • 3: 5 + 6 + 7 + 8 + 9 + 1 + 3 = 39 = 3 + 9 = 12 (делится).
  • 4: множитель отсутствует, поскольку 13 не делится на 4.
  • 5: число не заканчивается на 0 или 5 (не делится).
  • 6: сумма цифр равная 12, и делится на 2 и 3 (делится).
  • 7: 5|678|913 = 6 + 7 + 8 + 9 + 1 + 3 = 34 (нет делителя).
  • 8: 913 не делится на 8, 4 и 2.
  • 9: не делится, поскольку сумма цифр эквивалентна 12.

Когда нужно доказать, что число является простым, тогда можно завершить упражнение на третьем шаге. Для этого необходимо минимальное количество операций, поскольку дальше их выполнять не имеет смысла. Если суть решения заключается в нахождении делителей, то его можно продолжать до 9 пункта включительно.

Решение задач с единицами массы

Ребята, какие единицы массы вы знаете? Давайте вспомним!

Игра

В каждом столбике найди «лишнее» слово, обоснуй свой ответ.

Вспомним таблицу единиц массы.

Задача

В тепличном хозяйстве выращивают огурцы и помидоры. В первой теплице собрали 132 кг огурцов. Во второй теплице собрали 1 ц 56 кг помидоров. Урожай огурцов или помидоров богаче и на сколько килограммов?

Разберем задачу вместе.

Выразим 1 ц 56 кг в килограммах. Из таблицы видим, что 1 ц = 100 кг, значит,

1 ц 56 кг = 156 кг

156 – 132 = 14 (кг) – собрали больше помидоров, чем огурцов.

Ответ: на 14 кг больше.

Следующую задачу решите самостоятельно. Проверьте по образцу.

Задача

5 т яблок разложили в ящики по 10 кг в каждый и отправили в хранилище. 120 ящиков с яблоками развезли в магазины города. Сколько килограммов яблок осталось в хранилище.

Проверь себя.

5 т = 5 000 кг

  • 5 000 : 10 = 500 (ящ.) – с яблоками отправили в хранилище.
  • 500 – 120 = 380 (ящ.) – с яблоками осталось в хранилище.
  • 380 ∙ 10 = 3 800 (кг) – яблок в хранилище.

Ответ: 3 800 кг.

Решение задачи можно записать выражением: (5 000 : 10 – 120) ∙10 = 3 800

А теперь разберем задачу, в которой встретится деление с остатком.

Задача

В хозяйстве собрали 5 ц клубники. 300 кг клубники оставили в ящиках, а остальную клубнику расфасовали в небольшие контейнеры по 300 г. Сколько контейнеров с клубникой получилось? Сколько граммов клубники осталось?

Сначала выразим 5 ц в килограммах.

5 ц = 500 кг

Узнаем, сколько кг клубники расфасовали в контейнеры.

500 – 300 = 200 (кг) – расфасовали в контейнеры.

Выразим 200 кг в граммах.

200 кг = 200 000 г.

Разделим 200 000 на 300 столбиком.

Сделаем вывод: если в условии задачи содержатся разные единицы массы, то необходимо выразить их в одинаковых единицах.

Сегодня на уроке мы научились делить столбиком на двузначные числа с остатком и без остатка, повторили единицы массы, решали задачи.

До новых встреч! Успехов в учебе!

Деление меньшего числа на большее

А можно ли в столбик разделить меньшее число на большее? Ничто не помешает это сделать. Вообще-то арифметика — это веселая и увлекательная игра со своими правилами. Главное — учимся соблюдать порядок. Итак, пробуем быстро разделить 36 на 540. Записываем выражение так:
Поскольку первое число меньше второго, то и результат будет меньше единицы, то придется иметь дело с нулями. Объяснение простое: частное показывает, сколько раз делитель укладывается в делимое. Если нисколько — значит, результат начинается с нуля:
А дальше действуем, как в предыдущих примерах:
Числа в столбике начинают повторяться, то есть получается бесконечная десятичная дробь.

Умножение чисел, оканчивающихся нулями

Решим следующие примеры устно: 721 ∙ 50, 4 500 ∙ 40.

Заменим круглое число произведением двух множителей: 50 = 5 ∙ 10

Число 721 сначала умножим на 5, затем – на 10.

721 ∙ 50 = (721 ∙ 5) ∙10 = 3 605 ∙ 10 = 36 050

Во втором примере сначала число 4 500 представим в виде произведения множителей 45 и 100, затем число 40 – в виде произведения 4 и 10.

4 500 ∙ 40 = 45 ∙ 100 ∙ 4 ∙ 10 = (45 ∙ 4) ∙100 ∙10 =180 ∙100 ∙10 = 180 000

Записи получаются очень длинными, можно и запутаться! Гораздо удобнее записать такие примеры столбиком. Мы знаем, что при умножении многозначных чисел столбиком существуют строгие правила: единицы подписываем под единицами, десятки – под десятками и так далее. Но при умножении круглых чисел от этого строгого правила нужно отступить.

Множители записываем друг под другом так, чтобы нули оказалась в стороне (как бы за чертой).

Попробуйте самостоятельно решить несколько примеров столбиком. Не забывайте о том, что под черту сносим нули обоих множителей.

640 ∙ 200             69 000 ∙ 30                   56 700 ∙ 80

Проверь себя.

Переход через десяток

Отдельно стоит сказать о проходе через десяток. Это явление встречается как в сложении, так и в вычитании. Рассмотрим отдельно переход через десяток в каждой из операций.

В сложении это выглядит следующим образом: вы складываете числа разряда, например, единиц. Но в результате сложения получается число больше 9, что выходит за пределы разряда. Что делать? Нужно просто записать единицы из получившегося числа, а к десяткам прибавить 1 при сложении. Рассмотрим на примере.

1567+154 – распишем по действиям сложение каждого разряда.

4+7=13 – в результат пойдет только число 3, а к сложению десятков нужно прибавить единицу.

6+5+1=12 – по той же схеме, в десятках останется только число 2, а 1 нужно прибавить в следующем действии при сложении уже сотен.

5+1+1=7

Оставшаяся единица в разряде тысяч не имеет пары во втором слагаемом, поэтому просто перепишем ее в результат. Ответом примера будет число: 1723

С вычитанием ситуация похожая, только здесь число в разряде может быть слишком маленьким. Для того, чтобы выполнить вычитание мы занимаем единицу у следующего разряда, которая в настоящем разряде превращается в 10.

Рассмотрим на небольшом примере:

35-16

5-6 – вычитание произвести не получится, но мы можем занять единицу у разряда десятков. Чтобы не забыть о «займе» над разрядом, из которого берут 1 ставят точку.

15-6=9

2-1=1

Результат: 19

Что мы узнали?

Мы узнали, что такое сложение и вычитание. Поговорили о каждой из операций в отдельности, привели примеры сложения и вычитания в столбик.

  1. /10

    Вопрос 1 из 10

Пример деления столбиком

Предположим, что нам нужно разделить число 102 на 4

Разберем это на картинке :

Первое, поскольку у нас цифра 4 однозначное, то проверяем первую цифру слева — это 1, то понятно, что 1 меньше 4, а нам нужно наоборот. Например, если бы перове число слева было бы рано 5, то нам не пришлось бы брать вторую цифру в делимом.

Берем двузначное число слева — это 10 и сравниваем с нажим делителем… 10 больше 4, теперь, все правильно, далее нам потребуется узнать «нод» двух чисел.

Не буду повторять, что такое «нод» — лишь покажу на примере, как мы видим, цифру 10 и делитель 4, то их общий нод будет 2. Или другими словами, в числе 10 умещается всего 2 числа 4…

Этот нод заносим под горизонтальную черту в область частного и умножаем его на 4 — это будет 8, и 8 ставим под ноль

От 10 отняли 8 и ставим его под черту под цифру 8 и если это число получилось меньше 4, то значит нод был найден верно! И нодом нам придется пользоваться много раз, поэтому нужно научиться его находить!

Теперь, у нас в самом верху еще осталась одна двойка, её сносим ниже к двойке, которая получилась отниманием от 10 восьмерки, получается число 22.

Далее опять находим нод чисел 22 и 4 — это 5,

5 заносим его под черту, ставим его после первого найденого нода.

Умножаем 5 на 4 — это будет 20,

20 ставим под 22.

Отнимем опять и получим 2 — это остаток.

Поскольку у нас наверху не осталось цифр, то ставим 0 и у нас получается 1020 — это означает, что мы перешли из целых в десятые, поэтому, под черту, рядом с пятеркой ставим точку(или запятую(зависит от того, как вас будут учить… )).

Сносим наш ноль до остатка, что получается 20.

Находим нод 20 и 4 — это опять 5.

Заносим 5 под черту рядом с запятой.

Умножаем 4 на 5 = 20.

Ставим его под нашим остатком и нулем.

Отнимаем — получаем ноль.

Обучение делению в столбик в тетради

Начинать обучение нужно тогда, когда ученик понял материал о делении на практике, с помощью игры и таблицы умножения.

Пример деления

Нужно начинать делить таким образом, применяя простые примеры. Так, деление 105 на 5.

Объяснять математическое действие нужно подробно:

  • Напишите в тетради пример: 105 разделить на 5.
  • Запишите это, как при делении в столбик.
  • Расскажите, что 105 – делимое, а 5 – делитель.
  • С учеником определите 1 цифру, которая допускает деление. Значение делимого – 1, эта цифра не делится на 5. А вот второе число – 0. В итоге получится 10, это значение допускается разделить данный пример. Число 5 два раза входит в число 10.
  • В столбике деления, под числом 5, напишите цифру 2.
  • Попросите ребенка число 5 умножить на 2. По итогу умножения получится 10. Это значение нужно записать под числом 10. Далее нужно написать в столбике знак вычитания. От 10 нужно отнять 10. Получится 0.
  • Запишите в столбике число, получившееся в результате вычитания – 0. У 105 осталось число, которое не участвовало в делении – 5. Это число нужно записать.
  • В итоге получится 5. Это значение нужно разделить на 5. Результат – цифра 1. Это число нужно записать под 5. Результат деления – 21.

Родителям нужно объяснить, что это деление не имеет остатка.

Начать деление можно с цифр 6,8,9, затем переходить к 22, 44, 66, а после к 232, 342, 345, и так далее.

Еще один пример деления

Алгоритм деления в столбик

Для этого алгоритма следует воспользоваться наглядным примером (рис. 1). Следует разделить 792 на 2. Первоначальное число является трехзначным и состоит единиц, десятков и сотен. Записывается операция в столбик, как показано на рисунке 1. Цифра «7» — первое неполное делимое. Вторым неполным называется делимое, полученное на втором цикле операции, а третьим — на третьем.

Рисунок 1. Графическое представление деления трехзначного числа в столбик.

Исходя из рисунка 1, можно составить алгоритм деления в столбик. Его можно применять не только для трехзначного, но и шестизначного, десятизначного и многозначного чисел. Единственное правило: количество цифр делимого должно быть больше, чем число знаков делителя. Алгоритм имеет такой вид:

  1. Записать делимое и делитель.
  2. Выделить первое неполное делимое (7): подобрать целое число (должно быть не больше I делимого), на которое следует умножить делитель для получения приблизительного значения первого (3, поскольку 3 * 2 = 6. Если взять 4, то 8 > 7).
  3. Произвести умножение и вычесть со значения первого (7 — 6 = 1), записав остаток. Если последнего нет, то ничего переносить не нужно.
  4. Взять II неполное делимое с учетом остатка (19).
  5. Подобрать множитель: 2 * 9 = 18 < 19.
  6. Произвести операцию вычитания с выделением остатка: 19 — 18 = 1.
  7. С учетом остатка (1) взять III неполное делимое (2).
  8. Подобрать множитель: 2 * 6 = 12.
  9. В остатке 0. Следовательно, операция закончена.

Деление в столбик с остатком осуществляется по такому же алгоритму. Например, 793 на два делится только с остатком. Чтобы не повторять вычисления с самого начала, можно воспользоваться уже готовыми. Для этого необходимо вернуться в седьмой пункт предыдущего алгоритма:

  1. Остаток (1) и III неполное делимое (3): 13.
  2. Множитель равен 6: 2 * 6 = 12 < 13.
  3. Остаток эквивалентен 1, но всего III неполных делителя. Операция выполнена с остатком 1.

Сложение двух чисел в столбик: что нужно знать?

Прежде чем мы перейдем непосредственно к операции сложения в столбик, рассмотрим некоторые важные моменты. Для быстрого освоения материала желательно:

  1. Знать и хорошо ориентироваться в таблице сложения. Так, при проведении промежуточных вычислений, вам не придется тратить время и постоянно обращаться к таблице сложения.
  2. Помнить свойства сложения натуральных чисел. Особенно свойства, связанные со сложением нулей. Напомним их кратко. Если одно из двух слагаемых равно нулю, то сумма равна другому слагаемому. Сумма двух нулей есть нуль.
  3. Знать правила сравнения натуральных чисел. 
  4. Знать, что такое разряд натурального числа. Напомним, что разряд — это позиция и значение цифры в записи числа. Разряд определяет значение цифры в числе — единицы, десятки, сотни, тысячи и т.д.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector