Как правильно объяснить ребёнку деление в столбик

Содержание:

Деление с остатком

К этим вычислениям нужно приступать только тогда, когда предыдущий материал выучен безупречно, алгоритм решения детально разобран и действия выполняются за считанные минуты. Как только ребенок детально разобрался в вопросе, можно двигаться дальше.

Особенность деления с остатком в том, что нужно выделить основную часть и понять, какое же число останется в итоге. На начальных порах у школьника может возникнуть барьер, ведь до этого все примеры решались легко, а теперь нужен иной подход к вычислениям.

Но опять-таки решение основывается на знании таблицы умножения и умении разделить большое число на несколько составляющих.

Пример: 

83:9, ребенок знает, что 81:9=9. 83-81=2. Значит, ответ: 9 и 2 в остатке.

114:5, 100:5=20, 10:5=2, 4 на 5 разделить невозможно. Соответственно, 114:5=100:5+20:5 и 4 = 22 и 4 в остатке.

Можно изучать этот тип примеров с помощью денежных операций, ведь сдача, полученная после оплаты покупок, — это как раз и есть остаток. Или же использовать для этой цели еду либо игрушки: куски торта, куклы можно делить на всех участников игрового процесса, подобрав такое количество, чтобы обязательно оставался «лишний» кусочек.

Алгоритм деления столбиком пошагово!

После того, как вы записали делимое и делитель по выше описанному правилу, считаем сколько цифр имеет делитель. В скрине ниже — делитель состоит из одной цифры — 4.

Смотрим на делимое(число, которое будем делить), а точнее на первую цифру слева(2) и сравниваем её с делимым(4). Очевидно, что 4 > 2 из чего получается, что при делении 2 на 4 мы целых не получим — это нам не подходит, переходим ск следующему пункту.

Далее смотрим на число, которое составляет две цифры слева — 23. Понятно, что 23 > 4. Если мы разделим 23 на 4, то получим 5 и 3 в остатке. Скобки применены, чтобы вы понимали, какое действие будет выполняться первым.

23 : 4 = (4 * 5) + 3

5 — записываем под горизонтальной линией, под делителем.

20 — результат умножения делителя и частного 4 * 5 = 20, записываем под делимым 23.

Отнимаем от делимого(23), полученный результат(20) , 23 — 20 = 3.

3 — получился остаток, который меньше 4.

Если вы еще не изучали десятичные дроби. То здесь мы останавливаемся.

Итого :

Принцип деления для детей

Дальше приступают к формированию самого понимания, что деление – это процесс разделения чего-нибудь на одинаковые части. Проще всего обучить ребенка такому математическому действию – попросить разделить небольшое количество предметов между ним и членами семьи. Используя игровой подход, ему легче уловить суть самого процесса деления.

Так, например, просят разделить апельсин на дольки между ним и членами семьи, чтобы у всех было поровну. Сначала ребенок будет перекладывать по одной штучке. Потом нужно предложить ему подсчитать, сколько долек было изначально, и какое количество досталось каждому.

Надо показать ребенку, что уметь разделить предметы – значит разложить их таким образом, чтобы все получили поровну независимо от количества участников. При этом объясняют, что не всегда их можно разделить на одинаковые части. Приводят пример. Если 10 яблок разделить между папой, мамой и бабушкой, то каждый получит по 3 штуки, а 1 останется.

Чтобы процесс обучения давался ребенку более легко, можно использовать наглядный материал. Используйте счетные палочки, раскладывая их в отдельные «кучки», имитируя деление палочек на несколько равных частей. Можно использовать орешки, семечки, карандаши. Обязательное условие – учитесь играя.

После того, как ребенок усвоил саму суть принципа деления, надо начинать изучать математическую запись этой операции. Объясняют, что деление – операция противоположная умножению. Демонстрируют это с помощью таблицы умножения.

Например, 3х2=6. Надо повторить, что произведение данных чисел равно результату умножения. Потом показать, что операция деления, противоположная умножению и все это показать ребенку. Делят наше произведение «6» на множитель «3», и в результате будет другой множитель.

Задача родителей – объяснить юному дарованию таблицу умножения «наизнанку»

Очень важно, чтобы ребенок ее хорошо усвоил. Это знание будет просто необходимо для изучения деления в столбик

Алгоритм деления в столбик

Для этого алгоритма следует воспользоваться наглядным примером (рис. 1). Следует разделить 792 на 2. Первоначальное число является трехзначным и состоит единиц, десятков и сотен. Записывается операция в столбик, как показано на рисунке 1. Цифра «7» — первое неполное делимое. Вторым неполным называется делимое, полученное на втором цикле операции, а третьим — на третьем.

Рисунок 1. Графическое представление деления трехзначного числа в столбик.

Исходя из рисунка 1, можно составить алгоритм деления в столбик. Его можно применять не только для трехзначного, но и шестизначного, десятизначного и многозначного чисел. Единственное правило: количество цифр делимого должно быть больше, чем число знаков делителя. Алгоритм имеет такой вид:

  1. Записать делимое и делитель.
  2. Выделить первое неполное делимое (7): подобрать целое число (должно быть не больше I делимого), на которое следует умножить делитель для получения приблизительного значения первого (3, поскольку 3 * 2 = 6. Если взять 4, то 8 > 7).
  3. Произвести умножение и вычесть со значения первого (7 — 6 = 1), записав остаток. Если последнего нет, то ничего переносить не нужно.
  4. Взять II неполное делимое с учетом остатка (19).
  5. Подобрать множитель: 2 * 9 = 18 < 19.
  6. Произвести операцию вычитания с выделением остатка: 19 — 18 = 1.
  7. С учетом остатка (1) взять III неполное делимое (2).
  8. Подобрать множитель: 2 * 6 = 12.
  9. В остатке 0. Следовательно, операция закончена.

Деление в столбик с остатком осуществляется по такому же алгоритму. Например, 793 на два делится только с остатком. Чтобы не повторять вычисления с самого начала, можно воспользоваться уже готовыми. Для этого необходимо вернуться в седьмой пункт предыдущего алгоритма:

  1. Остаток (1) и III неполное делимое (3): 13.
  2. Множитель равен 6: 2 * 6 = 12 < 13.
  3. Остаток эквивалентен 1, но всего III неполных делителя. Операция выполнена с остатком 1.

Делим в столбик

Этот метод используют, когда выполнить действие устно нельзя. Здесь ответ дети подбирают. Если ребенок хорошо знает умножение и вычитание, то решение этих примеров доставит большое удовольствие.

Родители акцентируют внимание на то, что обычный знак деления заменяется двумя чертами, которые похожи на перевернутую букву >. Слева стоит делимое, справа над чертой – делитель, а под чертой – частное

Делимое состоит из двух разрядов: десятки и единицы. Начинаем выполнять действие с крайней цифры слева. Взрослые напоминают школьнику, что есть деление с остатком. Оно пригодится в этом случае.

9 : 7

Задаем наш традиционный вопрос: какое надо подобрать число, чтобы при умножении его на 7, получился ответ, близкий к 9. Это 1. Ее пишем в частное (под чертой).

Проверяем.

7?1 = 7

Ставим под 9 и вычитаем. Знак равенства заменяется в таких примерах горизонтальной чертой. Это надо проговаривать ребенку.

9 — 7 = 2

К остатку сносим 8 из делимого. Полученное число (28) делим на 7 Ответ: 4. Пишем рядом с единицей в частном.

Проверяем: 4 ?7 =28

Полученный результат вычитаем из 28. Остаток 0. Задание выполнено.

Просмотры 350

Поделитесь записью в соцсетях

more

Деление натуральных чисел с остатком. Проверка результата

Деление натуральных чисел с остатком, особенно при больших числах, довольно трудоемкий и громоздкий процесс. Допустить ошибку в вычислениях может каждый. Именно поэтому, проверка результата деления поможет понять, все ли вы сделали правильно. Проверка результата деления натуральных чисел с остатком выполняется в два этапа.

На первом этапе проверяем, не получился ли остаток больше делителя. Если нет, то все хорошо. Иначе, можно сделать вывод, что что-то пошло не так.

Важно!

Остаток всегда меньше делителя!

На втором этапе проверяется справедливость равенства a=b·c+d. Если равенство после подстановки значений оказывается верным, то и деление было выполнено без ошибок.

Пример 6. Проверка результата деления натуральных чисел с остатком. 

Проверим, верно ли, что 506÷28=17 (остаток 30).

Сравниваем остаток и делитель: 30>28.

Значит, деление выполнено неверно.

Пример 7. Проверка результата деления натуральных чисел с остатком. 

Школьник разделил 121 на 13 и получил в результате неполное частное 9 с остатком 5. Правильно ли он сделал?

Чтобы узнать это, сначала сравниваем остаток и делитель: 5<13.

Первый пункт проверки пройден, переходим ко второму.

Запишем формулу a=b·c+d. a=121; b=13; c=9; d=5.

Подставляем значения и сравниваем результаты

13·9+5=117+5=122; 121≠122

Значит, в вычисления школьника где-то закралась ошибка.

Пример 8. Проверка результата деления натуральных чисел с остатком. 

Студент выполнял лабораторную работу по физике. В ходе выполнения ему понадобилось разделить 5998 на 111. В результате у него получилось число 54 с остатком 4. Все ли правильно посчитано?

Проверим! Остаток 4 меньше, чем делитель 111, поэтому переходим ко второму этапу проверки.

Используем формулу a=b·c+d, где a=5998; b=111; c=54; d=4.

После подстановки, имеем:

5998=111·54+4=5994+4=5998.

Равенство корректно, а значит, и деление выполнено верно.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Как научиться делить столбиком на двузначное

В 4 классе ученик должен уметь делить уголком многозначные значения на двух- и трехзначное число. Полученный навык необходим для дальнейшего курса математики вплоть до 11 класса.
Конечно, такое деление сложнее однозначного, но при правильном подходе и понимании оно не составит труда. Здесь важен правильный подбор чисел и постепенное освоение темы, от простого к сложному.

Для примера выполним действие: 144 : 24

Как и в случае однозначного деления, определим число большее самого делителя: 14<24, т.е. будем делить сразу все число — 144. Прикинем 144 : 20, получим примерно 7. Пробную цифру пока не пишут в колонке. Проверим, 7 х 24 = 168, что значительно больше нашего делимого. Возьмем по 6 х 24 = 144 – это наше число. Подпишем его под делимым и получим ответ – 6.

Разделим 1035 на 23.

Определив первую цифру, 103 >23, делим ее на 23. 20 х 5 = 100, но у нас в примере 23 х 5 = 115, что больше 103. Возьмем по 4: 23 х 4 = 92. Запишем ответ в правой колонке под чертой.
От 103 – 92 = 11. Данные запишем под делимым. 11<23, т.е. расчеты сделаны верно.
К 11 снесем 5 и получим цифру «115». Методом подбора определим результат: 23 х 5 = 115.
Цифру «5» запишем рядом с 4 в ответ – 45.
Проверим: 45 х 23 = 1035, результат верен.

Работа с многозначными числами

Программа за 4 класс предлагает более сложный процесс проведения деления с увеличением расчетных чисел. Если в третьем классе расчеты проводились на основе базовой таблицы умножения в пределах от 1 до 10, то четвероклассники вычисления проводят с многозначными числами более 100.

Данное действие удобнее всего выполнять в столбик, так как неполное частное также будет двузначным числом (в большинстве случаев), а алгоритм столбика облегчает вычисления и делает их более наглядными.

Разделим многозначные числа на двузначные: 386:25

Данный пример отличается от предыдущих количеством уровней расчета, хотя вычисления проводят по тому же принципу, что и ранее. Рассмотрим подробнее:

386 – делимое, 25 – делитель. Необходимо найти неполное частное и выделить остаток.

Первый уровень

Делитель – двузначное число. Делимое – трехзначное. Выделяем у делимого первые две левые цифры – это 38. Сравниваем их с делителем. 38 больше 25? Да, значит, 38 можно разделить на 25. Сколько целых 25 входит в 38?

25*1=25, 25*2=50. 50 больше 38, возвращаемся на один шаг назад.

Ответ – 1. Записываем единицу в зону не полного частного.

Далее:

38-25=13. Записываем число 13 под чертой.

Второй уровень

13 больше 25? Нет – значит можно «опустить» цифру 6 вниз, дописав ее рядом с 13, справа. Получилось 136. 136 больше 25? Да – значит можно его вычесть. Сколько раз 25 поместиться в 136?

25*1=25, 25*2=50, 25*3=75, 25*4=100, 25*5=125, 256*=150. 150 больше 136 – возвращаемся назад на один шаг. Записываем цифру 5 в зону неполного частного, справа от единицы.

Вычисляем остаток:

136-125=11. Записываем под чертой. 11 больше 25? Нет – деление провести нельзя. У делимого остались цифры? Нет – делить больше нечего. Вычисления закончены.

Ответ: неполное частное равно 15, в остатке 11.

А если будет предложено такое деление, когда двузначный делитель больше первых двух цифр многозначного делимого? В таком случае, третья (четвертая, пятая и последующая) цифра делимого принимает участие в вычислениях сразу.

Приведем примеры на деление с трех- и четырехзначными числами:

386:75

75 – двузначное число. 386 – трехзначное. Сравниваем первые две цифры слева с делителем. 38 больше 75? Нет – деление провести нельзя. Берем все 3 цифры. 386 больше 75? Да – деление провести можно. Проводим вычисления.

75*1=75, 75*2=150, 75*3=225, 75*4=300, 75*5= 375, 75*6=450. 450 больше 386 – возвращаемся на шаг назад. Записываем 5 в зону неполного частного.

Находим остаток: 386-375=11. 11 больше 75? Нет. Еще остались цифры у делимого? Нет. Вычисления закончены.

Ответ: неполное частное = 5, в остатке 11.

119:35

Выполняем проверку: 11 больше 35? Нет – деление провести нельзя. Подставляем третье число – 119 больше 35? Да – действие провести можем.

35*1=35, 35*2=70, 35*3=105, 35*4=140. 140 больше 119 – возвращаемся на один шаг назад. Записываем 3 в зону неполного остатка.

Находим остаток: 119-105=14. 14 больше 35? Нет. Остались цифры у делимого? Нет. Вычисления закончены.

Ответ: неполное частное = 3, осталось 14.

1195:99

Проверяем: 11 больше 99? Нет – подставляем еще одну цифру. 119 больше 99? Да – начинаем вычисления.

11&lt,99, 119&gt,99.

99*1=99, 99*2=198 – перебор. Записываем 1 в неполное частное.

Находим остаток: 119-99=20. 20&lt,99. Опускаем 5. 205&gt,99. Вычисляем.

99*1=99, 99*2=198, 99*3=297. Перебор. Записываем 2 в неполное частное.

Находим остаток: 205-198=7.

Ответ: неполное частное = 12, остаток 7.

Деление с остатком примеры

Учимся делить в столбик с остатком

Делим и умножаем, при помощи таблицы умножения

Здесь стоит объяснить ребенку, про обратное умножению действие, называется «делением». Опираясь на таблицу умножения, покажите обучаемому эту взаимосвязь между делением и умножением на какой-нибудь примере.

Например: 2 умножить на 4 будет восемь

Здесь акцентируйте внимание на то, что итогом умножения будет произведение двух чисел. Затем будет лучше проиллюстрировать операцию деления, указывая на действие обратной операции умножения

Поделите получившийся ответ «8» на любой множитель – «4» или «2», в результате всегда будет тот множитель, который не использовался в операции.

Также стоит научить распознавать категории, описывающие операции деления, такие как, «делитель», «делимое», «частное»

Важно закрепить данные знания, они наиболее необходимы для дальнейшего процесса обучения!

Операция деления: основные обозначения

Очень часто в задачах вопрос сформулирован следующим образом: «Найти частное чисел 30 и 5» или «Определить делитель, если частное 42, а делимое — 7». Если ребенок не знает обозначений, то он не сможет приступить к решению такого примера. Поэтому начинать нужно с основ:

  • делимое — то число, которое и будет разделено;

  • делитель — число, на которое будет разделено делимое;

  • частное — результат.

Понять роль каждого показателя поможет простая игра. Есть 12 вкусных конфет, а в семье 4 человека. Как разделить сладости поровну? Всего 12 — это делимое. Количество человек — делитель. Ученику начальной школы будет легче понять задачу, если объяснить ему, что делимое всегда самое большое число. Невозможно разделить 4 на 12, а значит, пример будет выглядеть следующим образом: 12:4 = 3.

Как разделить десятичную дробь на натуральное число столбиком

Делить столбиком можно не только натуральные числа, но и дроби. Алгоритм мы подробно опишем здесь. Итак, как делить десятичные дроби на натуральные числа в столбик:

1. Добавить к десятичной дроби справа несколько нулей (для деления мы можем добавлять любое их количество, которое нам необходимо).

2. Выполнить деление по стандартной схеме. Когда деление целой части дроби подойдет к концу, мы ставим запятую в получившемся частном и считаем дальше.

Результатом такого деления может стать как конечная, так и бесконечная периодическая десятичная дробь. Это зависит от остатка: если он нулевой, то результат окажется конечным, а если остатки начнут повторяться — получится периодическая дробь.

Пример: Разделить столбиком 49,14÷3

Как решаем

1. Делим столбиком, предварительно дописав два нуля к десятичной дроби.

2. После того, как мы поделили целую часть дроби и получили 16, отделяем ответ запятой (16) и продолжаем деление уже для дробной части

В конце у нас нулевой остаток, значит деление завершено.

Ответ: 49,14÷3 = 16,38

Алгоритм деления столбиком

1. Запишем числа вместе с символом деления столбиком. Теперь смотрим на первую слева цифру в записи делимого. Возможны два случая: число, определяемое этой цифрой, больше, чем делитель, и наоборот. В первом случае мы работаем с этим числом, во втором — дополнительно берем следующую цифру в записи делимого и работаем с соответствующим двузначным числом. Согласно с этим пунктом, выделим в записе примера число, с которым будем работать первоначально. Это число — 14, так как первая цифра делимого 1 меньше, чем делитель 4.

2. Определяем, сколько раз числитель содержится полученном числе. Обозначим это число как x=14 . Последовательно умножаем делитель 4 на каждый член ряда натуральных чисел ℕ, включая нуль : , 1, 2, 3 и так далее. Делаем это, пока не получим в результате x или число, большее чем x. Когда в результате умножения получается число 14, записываем его под выделенным числом по правилам записи вычитания в столбик. Множитель, на который умножался делитель, записываем под делителем. Если в результате умножения получается число, большее чем x, то под выделенным числом записываем число, полученное на предпоследнем шаге, а на место неполного частного (под делителем) пишем множитель, на который на предпоследнем шаге проводилось умножение.

В соответствии с алгоритмом имеем:

4·=<14; 4·1=4<14; 4·2=8<14; 4·3=12<14; 4·4=16>14.

Под выделенным числом записываем число 12, полученное на предпоследнем шаге. На место частного записываем множитель 3.

3. Столбиком вычитаем  из 14 12 , результат записываем под горизонтальной чертой. По аналогии с первым пунктом сравниваем полученное число с делителем. 

4. Число 2 меньше числа 4, поэтому записываем под горизонтальной чертой после двойки цифру,расположенную в следующем разряде делимого. Если же в делимом более нет цифр, то на этом операция деления заканчивается. В нашем примере после полученного в предыдущем пункте числа 2 записываем следующую цифру делимого — . В итоге отмечаем новое рабочее число — 20.

Важно!

Пункты 2-4 повторяются циклически до окончания операции деления натуральных чисел столбиком.

2. Снова посчитаем, сколько делителей содержится в числе 20. Умножая 4 на , 1, 2, 3..  получаем:

4·5=20

Так как мы получили в результе число, равное 20 , записываем его под отмеченным числом, а на месте частного, в следубщем разряде, записываем 5 — множитель, на который проводилось умножение. 

3. Проводим вычитание столбиком. Так как числа равны, получаем в результате число ноль: 20-20=.

4. Мы не будем записывать число ноль, так как данный этап — еще не окончание деления. Просто запомним место, куда мы могли его записать и запишем рядом число из следующего разряда делимого. В нашем случае — число 2.

Принимаем это число за рабочее и снова выполняем пункты  алгоритма.

2. Умножаем делитель на , 1, 2, 3.. и сравниваем результат с отмеченным числом.

4·=<2; 4·1=4>2

Соответственно, под отмеченным числом записываем число , и под делителем в следующий разряд частного также записываем .

3. Выполняем операцию вычитания  и под чертой записываем результат.

4. Справа под чертой добавляем цифру 8, так как это следующая цифра делимого числа.

Таким образом, получаем новое работчее число — 28. Снова повторяем пункты алгоритма.

Проделав все по правилам, получаем результат:

Переносим под черту вниз последнюю цифру делимого — 8. В последний раз повторяем пункты алгоритма 2-4 и получаем:

В самой нижней строчке записываем число . Это число записывается только на последнем этапе деления, когда операция завершена.

Таким образом, результатом деления числа 140228 на 4 является число 35072. Данный пример разобран очень подробно, и при решении практических заданий расписывать все действия столь досканально не нужно.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

Приведем другие примеры деления чисел в столбик и примеры записи решений.

Пример 1. Деление натуральных чисел в столбик

Разделим натуральное число 7136 на натуральное число 9.

Запишем:

После второго, третьего и четвертого шага алгоритма запись примет вид:

Повторим цикл:

Последний проход, и поучаем результат:

Ответ: Неполное неполное частное чисел 7136 и 9 равно 792, а остаток равен 8.

При решении практических примеров в иделе вообще не использовать пояснения в виде словесных комментариев.

Пример 2. Деление натуральных чисел в столбик

Разделим число 7042035 на 7.

Ответ: 1006005

Многозначные числа

Сложнее всего детям даются задачи на трехзначные и четырехзначные числа. Четверокласснику тяжело оперировать тысячами и сотнями тысяч. У школьника возникают следующие проблемы:

  1. Не может определить неполное число делимого для первого действия. Вернитесь к изучению разрядов натуральных чисел, поработайте над развитием внимания малыша.
  2. Пропускает 0 в записи частного. Это самая распространенная проблема. В результате у ребенка получается число на несколько разрядов меньше правильного. Чтобы избежать этой ошибки, нужно распечатывать памятку с последовательностью действий в примерах, где в середине частного есть нули. Предложите ребенку тренажер с такими заданиями для отработки навыка.

При обучении решению задач с крупными (многозначными) числами действуйте поэтапно:

  1. Объясните, что такое неполное делимое и зачем его выделять.
  2. Потренируйтесь в поиске делимого устно без последующего решения задач. Например, дайте детям такие задания:

Найдите неполное частное в примерах: 369:28; 897:12; 698:36.

  1. Теперь приступайте к решению на бумаге. Запишите столбиком: 1068:89.
  2. Сначала нужно отделить неполное делимое. Можно использовать запятую сверху над числами.

106’8:89

  1. Подбирайте частное на отдельном листочке или посчитайте в уме.
  2. Распишите результат.
  3. Внимательно отнимайте цифры от делимого. Следите за тем, чтобы результат после вычитания был меньше делителя.
  4. Продолжайте деление до конца, пока не получится 0.
  5. Придумайте еще несколько похожих примеров без остатка. Степень сложности увеличивайте постепенно.

Наглядный пример для ученика и родителей

Деление в столбик можно наглядно объяснить на этом примере.

  1. Записывают в столбик 2 числа: делимое – 536 и делитель – 4.
  2. Первая часть для деления должна делиться на 4 и частное должно быть менее 9. Для этого подходит цифра 5.
  3. 4 поместиться в 5 всего 1 раз, поэтому в ответе записываем 1, а под 5 – 4.
  4. Далее, выполняется вычитание: из 5 отнимается 4 и под чертой записывается 1.
  5. К единице сносится следующее разрядное число – 3. В тринадцати (13) — 4 поместится 3 раза. 4х3= 12. Двенадцать записывают под 13-ю, а 3 – в частное, как следующее разрядное число.
  6. Из 13 вычитают 12, в ответе получают 1. Снова сносят следующее разрядное число – 6.
  7. 16 снова делится на 4. В ответ записывают 4, а в столбик деления – 16, подводят черту и в разнице 0.

Решив примеры на деление в столбик со своим ребенком несколько раз, можно достичь успехов в быстром выполнении задач в средней школе.

Деление в столбик двузначных, трехзначных, многозначных чисел, чисел с нулями

Не нужно пугаться сразу, что процесс деления не простой, поэтому вы не освоите его. Освоите! В математике следует соблюдать четкие правила, тогда у вас все получится. Алгоритм деления лучше учить на конкретных примерах, ниже будет представлено множество примеров.

Пример деления на трехзначный делитель

Все они выполняются по схеме:

  1. Вначале записывается делимое, рядом ставится значок разделить: Ι—, и над чертой пишется делитель (число, на которое делят делимое).
  2. Потом необходимо выделить часть делимого для осуществления деления, если это необходимо в данном случае.
  3. Далее придется выполнять умножение для того, чтобы определить, сколько раз взять делитель, чтобы получилась выделенная часть делимого. Причем число не должно быть больше 9-ти.
  4. Выполняете умножение делителя, записываете результат под делимым, а число ≤ 9-ти записываете под черту знака: Ι– разделить.
  5. Из выбранной части делимого вычитаете результат, записываете его под подчеркиванием, сносите следующую цифру делимого, повторяйте опять процесс умножения, пока не разделите число на число.

Рассмотрим деление в столбик на простом примере:

Если такие двухзначные числа, как 16, 28 можно разделить в уме на 2 или 4 (в первом случае при делении на 2 получится 8 и 14), а во втором (4 и 7), то 51 разделить на 3 без столбика уже сложнее. Как происходит деление в столбик распишем на примере 51 разделить на 3.

Деление в столбик

  • Как записывается делимое, делитель уже было сказано, визуально можно посмотреть выше на изображении. Делимое идет первым, потом ставится значок деления и над чертой пишут делитель.
  • Теперь определяемся, сколько выделить цифр, чтобы начать подбирать множитель, который записывается под чертой в выделенный квадратик на изображении.
  • Выделяем одну цифру 5-ку, она больше 3-ки, на черновике распишите примерно какой подобрать множитель, для того чтобы получить число ≤ 5, наглядно это выглядит так: 5 ≥ 3 · 1, число 1 и есть множитель. Его пишут под чертой делить в квадратике.
  • Далее под пятеркой пишем произведение 3 · 1 = 3.
  • Теперь вычитаем из 5 — 3 = 2. Разница, в нашем случае 2 должна быть < делителя, в нашем случае 3.
  • Итак, остается разделить 21 на 3. Из таблицы умножения вы знаете, что: 21 : 3 = 7.
  • Семерку пишут под чертой значка делить после единицы. Ответ получается 17.

Далее рассмотрим пример деления трехзначных чисел:

Давайте разделим трехзначное число 512 на 16. Деление будет происходить по той же схеме, что и двухзначного числа.

Пример деления трехзначного числа

  • Запишите делимое, делитель, как на фото выше.
  • Далее выделим число 51, и узнайте, сколько раз нужно взять число 16, чтобы получилось произведение меньше или равно 51. Итак, выше представлены расчеты: 16 · 3 = 48 < 51.
  • Значит под чертой напишите 3, а под делимым 48. Теперь из 51 вычтите 48, получится 3, сносим следующую цифру 2.
  • Подберите множитель к 16, чтобы произведение получилось равное или меньше 32. Итого: 16 · 2 = 32.
  • Двойку запишите под черту знака деления, а результат 32 под делимым. Итого 32 — 32 = 0.
  • Результат 32.

Рассмотрим деление многозначного числа:

Давайте найдем частное 998190 на 135, пример представлен на изображении ниже. Чтобы решить его, следует подставить нужные числа в пустых клетках.

Пример деления в столбик

  • Итак, нужно найти первую цифру, на которое нужно умножить число 135, чтобы получить результат ≤ 998. Для этого понадобится знать отлично таблицу умножения и умение складывать цифры. 135 · 7 = 945.
  • Число 945 пишите под делимым, вычтите из 998 — 945 = 53. Это число меньше 135, потому нужно снести еще одну цифру 1, получится 531.
  • Высчитываем, какой множитель подойдет, к 135, чтобы получить число меньше, чем 534. Решение: 135 · 3 = 405.
  • Вторая цифра под чертой знака деления 3, из 531 — 405 = 126.
  • Сносим 9, выходит 1269, подбираем множитель к 135. Результат 135 · 9 = 1215.
  • Третья цифра под чертой 9. Теперь: 1269 — 1215 = 54.
  • Сносим 0, выходит 540, а 540 = 135 · 4, итого последняя цифра результата это 4.
  • Результат 7394.

Деление чисел с нулями:

Разделяем столбиком – легко и быстро

Перед тем, как начинать обучение следует вспомнить с ребенком, какое название имеет каждое число в процессе операции разделения. Главное, научиться быстро и безошибочно научиться определять данные категории. 

Наглядный пример:

Попробуем разделить 938 на 7. В этом приведенном примере число 938 будет являться делимым, а число 7 будет делителем. В результате действия, ответ будет называться частное.

  1. Необходимо записать числа, разделив их «уголком».
  2. Предложите ученику из наименьшего числа делимого выбрать то, что больше делителя. Из цифр 9, 3, 8, наибольшим будет цифра 9. Предложите проанализировать, сколько семерок может содержать в цифре 9. Одним правильным ответом здесь будет только один. Первым результатом записываем 1.
  3. Оформляем деление в столбик.

Умножим делитель 7 на 1, ответ будет 7. Полученный результат вписываем под первое число нашего делимого, затем вычитаем в столбик. Таким образом, из 9 отнимаем 7 и в ответе получаем 2. Это тоже записываем.

  1. Видим число, получившееся меньше делителя, поэтому увеличиваем его. Чтобы это сделать, объединим его вместе с неиспользованным числом делимого, то есть с цифрой 3. Дописываем 3 к полученной 2.
  2. Затем анализируем сколько раз делитель 7 будет содержаться в числе 23. Ответ 3 раза и фиксируем его в частном. Результат произведения 7 на 3 (21) вписываем снизу в столбик под число 23.
  3. Остается только найти последнее число частного. Применяя тот же алгоритм, продолжает вычисления в столбике. Вычитает в столбике 23-21 получает разницу, равной числу 2. Из всего делимого, у нас остается только неиспользованное число 8. Его объединяем с полученным результатом 2, получаем в ответе 28.
  4. В заключение анализируем, какое количество, раз делитель 7 содержится в полученном нами числе. Правильный ответ 4 раза. Ее мы вписываем в результат. В итоге наш ответ, полученный при процессе деления равен 134.

Самым наиболее главным при обучении ребенка методу деления, будет усвоение и четкое понимание алгоритма действий, ведь на самом деле он предельно прост.

Если ваш ребенок отлично умеет оперировать таблицей умножения, то с «обратным» делением у него не должны возникнуть трудности

Поэтому очень важно все время тренировать полученные навыки. Не стоит останавливаться на достигнутом

Для легкого обучения юного ученика методу деления следует:

  • в возрасте трех лет правильно усвоить термины «целое» и «часть». Должно сформироваться понимание понятия целого, в качестве неразделимой категории, а также восприятие отдельных частей целого в понятии самостоятельного объекта.
  •  правильно понимать и разбираться в методах деления и умножения.

Чтобы занятия доставили ребенку удовольствие, следует возбуждать интерес к математике в ситуациях в быту, а не только в процессе учебы.

Поэтому тренируйте наблюдательность у ребенка, придумывайте аналогии математических действий во время игр, в процессе конструирования либо же в простых наблюдениях за природой.

Как правильно подготовить ребенка к восприятию нового материала?

Деление в столбик – это сложный процесс, который требует от ребенка определенных знаний. Чтобы выполнить деление, необходимо знать и уметь быстро вычитать, складывать, умножать. Немаловажными являются знания разрядов чисел.

Каждое из этих действий следует довести до автоматизма. Ребенок не должен долго думать, а также уметь вычитать складывать не только числа первого десятка, а в пределах сотни за несколько секунд.

Важно формировать правильное понятие деления, как математического действия. Еще при изучении таблиц умножения и деления, ребенок должен четко понимать, что делимое – это число, которое будет делиться на равные части, делитель – указывать, на сколько частей нужно разделить число, частное – это сам ответ

Деление с остатком и неполное частное

Но не всегда можно одно число разделить на другое. Вернее сказать, что не всегда можно сделать это полностью. Например, 37 нельзя разделить на 5, потому что нет такого натурального числа, умножив которое на 5, мы получили бы 37. В этом случае говорят, что 37 не делится нацело на 5.

К примеру, если мы захотим раздать все 37 яблок поровну между пятью детьми, то у нас это сделать не получится. Мы сможем раздать (использовать из всего количества яблок) только по 7 яблок каждому ( \(\textcolor{red} {7\cdot 5=35}\) ), и у нас останется 2 яблока ( \(\textcolor{red} {37-35=2}\) ).

В таком случае действие деление также состоит из делимого (в нашем случае 37) и делителя (5). Полученное число 7 называется неполное частное, потому что не все делимое число мы смогли разделить на необходимое число частей. А разница между полным делимым (37) и использованными из него единицами (35), то есть число 2, называется остаток.

Итак, деление с остатком – это нахождение
такого наибольшего целого числа, умножив которое на делитель, мы получим число,
максимально близкое к делимому, но не превосходящее его. Это искомое число
называется неполное частное. Разница
между делимым и неполным частным называется остаток.

Остаток всегда меньше делителя!

Отсюда следует общий вид действия деления натуральных чисел для случаев деления без остатка и с остатком.Разделить целое число a (делимое) на целое число b (делитель) означает найти такие числа c и d, при которых справедливы следующие соотношения: \(\textcolor{red} {a=b\cdot c+d}\) ; \(\textcolor{red} {d<b}\) .Если \(\textcolor{red} {d=0}\) , тогда говорят, что a делится на b без остатка.

Компоненты действия
деление с остатком:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector